

Home Search Collections Journals About Contact us My IOPscience

Superconductivity of the new skutterudite compound $La_x Rh_4 P_{12}$ prepared at high pressure

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys.: Condens. Matter 17 7353

(http://iopscience.iop.org/0953-8984/17/46/019)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 06:47

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 17 (2005) 7353-7357

Superconductivity of the new skutterudite compound $La_x Rh_4 P_{12}$ prepared at high pressure

Ichimin Shirotani¹, Shingo Sato¹, Chihiro Sekine¹, Keiki Takeda¹, Ikuo Inagawa² and Takehiko Yagi³

¹ Muroran Institute of Technology, 27-1, Mizumoto, Muroran-shi 050-8585, Japan

² Kyosemi Corporation, 385-31, Toiso, Eniwa-shi 061-8568, Japan

³ Institute for Solid State Physics, University of Tokyo, Kashiwa-shi 277-8581, Japan

Received 21 July 2005, in final form 4 October 2005 Published 1 November 2005 Online at stacks.iop.org/JPhysCM/17/7353

Abstract

A new skutterudite compound La_xRh₄P₁₂ has been prepared at around 1100 °C and 4 GPa. This product was characterized by powder x-ray diffraction at ambient pressure. The x-ray diffraction profile of La_xRh₄P₁₂ is indexed to the filled skutterudite-type structure. The lattice constant of this sample is 8.0581(5) Å. The x value estimated from x-ray diffraction and electron probe microanalysis data is about 0.6. Electrical and magnetic properties of this compound have been studied at low temperatures. La_xRh₄P₁₂ showed a superconducting transition at around 17 K. This compound has the highest T_c among metal phosphides. The thermoelectric power of the new compound is negative, $S = -47 \,\mu V \, K^{-1}$, at room temperature. The new superconducting material La_xRh₄P₁₂ is an n-type conductor.

1. Introduction

The superconductivity of various filled skutterudites has been studied at low temperatures. The ternary metal phosphides LaT_4P_{12} (T = Fe, Ru and Os) are superconductors with superconducting transition temperatures (T_{cs}) of 4.1, 7.2 and 1.8 K, respectively [1–3]. We have prepared new filled skutterudites with the element Y at high temperature and high pressure [4]. The compounds YT_4P_{12} (T = Fe, Ru and Os) show superconductivity at around 7, 8.5 and 3 K, respectively [5–7]. The T_{cs} of YT_4P_{12} are higher than those of the corresponding La compounds. The superconductivity of LaT_4X_{12} (T = Ru and Os; X = As and Sb) is observed at low temperatures [8–11]. LaRu₄As₁₂ has the highest T_c (10.3 K) among the skutterudite compounds. The interesting superconductivities of Pr-based skutterudites PrT_4X_{12} (T = Ru and Os; X = P, As and Sb) with f electrons have been investigated at low temperatures. PrRu₄As₁₂ shows a superconducting transition at around 2.4 K [8]. The pressure-induced superconductivity of PrRu₄P₁₂ is found at around 2 K and 14 GPa [12]. PrOs₄Sb₁₂ behaves as a heavy fermion superconductor at lower temperatures [13].

Figure 1. Crystal structure of a binary skutterudite compound with $CoAs_3$ -type structure; T = Co, Rh and Ir, X = P, As and Sb.

Filled skutterudites LnT_4X_{12} (Ln = lanthanide; T = Fe, Ru and Os; X = P, As and Sb) crystallize in a skutterudite-type structure filled by lanthanide atoms [14]. This structure is cubic, with space group $Im\bar{3}$, Z = 2. Figure 1 shows the CoAs₃-type structure of binary skutterudite compounds with the general formula TX₃ (T = Co, Rh and Ir; X = P, As and Sb) [15]. There are two voids in the unit cells of these compounds. Metal atoms can be doped into these voids. Partially filled compounds $Ln_xCo_4P_{12}$ (Ln = lanthanide) are prepared by reaction of the elemental components in molten Sn at ambient pressure; the *x* value is below 0.25 [16]. Takizawa *et al* have synthesized new compounds Sn_xCo₄Sb₁₂ at high pressures; the *x* value increases with increasing pressure [17].

We have prepared the new skutterudite $La_x Rh_4 P_{12}$ at high temperature and high pressure. The electrical resistivity and magnetic susceptibility of this compound have been studied at low temperatures. Superconductivity of $La_x Rh_4 P_{12}$ is found at around 17 K.

2. Experimental procedure

By use of a wedge-type cubic-anvil high-pressure apparatus, various skutterudite compounds have been prepared at high temperatures and high pressures [2–9]. The upper and lower stages of the high-pressure apparatus consist of three anvils that slide on the wedge formed in shallow V-shaped grooves. The anvil's movement is completely synchronized by means of a wedge system. The sample assembly for the preparation of skutterudite compounds is similar to that used for the high-pressure synthesis of ternary metal compounds [18]. The new skutterudite compound La_xRh₄P₁₂ was prepared by reaction of each metal and red phosphorus powders at around 4 GPa and 1100 °C. The retention time was 1.5 h under these conditions. This product was characterized by powder x-ray diffraction using Cu K α radiation and silicon as a standard at ambient pressure. Figure 2 shows x-ray diffraction of La_xRh₄P₁₂ prepared at around 4 GPa and 1100 °C. This profile was indexed to the filled skutterudite-type structure. The lattice constant of the sample is a = 8.0581(5) Å. There are small amounts of LaP and RhP₂ produced at high pressure. These materials do not show superconductivity above 1.5 K. The *x* value estimated from x-ray diffraction and electron probe microanalysis (EPMA) data is about 0.6. Two voids in the unit cell are about 60% occupied by La atoms at 4 GPa.

Figure 2. X-ray diffraction of La_xRh₄P₁₂ prepared at around 4 GPa and 1100 °C.

Figure 3. Electrical resistivity of $La_x Rh_4 P_{12}$ at low temperatures.

A copper or gold lead was attached to each polycrystalline sample with silver paste, and four-lead electrical resistance measurements were performed at low temperatures. The dc magnetic susceptibility was measured in the range of 1.8–300 K with a Quantum Design SQUID magnetometer.

3. Results and discussion

Figure 3 shows the resistivity versus temperature curves for $La_x Rh_4 P_{12}$. A binary skutterudite compound RhP₃ has the CoAs₃-type structure [15]. There are two voids in the unit cell of the compound. La atoms are doped into RhP₃ at high pressure. The lattice constant of $La_x Rh_4 P_{12}$ prepared at around 4 GPa and 1100 °C is a = 8.0581 Å. This value is much larger than the lattice parameter (a = 7.996 Å) of RhP₃. As mentioned above, the two voids in the unit cell

Figure 4. Susceptibility measured in an applied magnetic field of 5 Oe for $La_x Rh_4 P_{12}$ at low temperatures.

Table 1. $T_{\rm c}$	s and lattice	constants of	various	skutterudite	superconductors.
----------------------	---------------	--------------	---------	--------------	------------------

	Lattice constant (Å)	$T_{\rm c}$ (K)
$La_x Rh_4 P_{12}$	8.0581	17
YFe ₄ P ₁₂	7.789	7
YRu ₄ P ₁₂	8.0298	8.5
YOs_4P_{12}	8.0615	3
LaFe ₄ P ₁₂	7.8316	4.1
$LaRu_4P_{12}$	8.0605	7.2
$LaOs_4P_{12}$	8.0844	1.8
LaRu ₄ As ₁₂	8.5081	10.3
LaOs ₄ As ₁₂	8.5437	3.2
$LaRu_4Sb_{12}$	9.2781	3.58
$LaOs_4Sb_{12}$	9.3029	0.74
PrRu ₄ P ₁₂	8.0516	2 (14.7 GPa)
PrRu ₄ As ₁₂	8.4963	2.4
$PrRu_4Sb_{12}$	9.2648	1.1
$PrOs_4Sb_{12} \\$	9.3031	1.85

are about 60% occupied by La atoms at 4 GPa. The resistivity of $La_x Rh_4 P_{12}$ decreases with decreasing temperature, and drops sharply at around 17 K. This sample shows the highest T_c obtained by us. Figure 4 shows the temperature dependence of the dc susceptibility measured in an applied magnetic field of 5 Oe for $La_x Rh_4 P_{12}$. The sample cooled in zero field shows large magnetic shielding at low temperatures. The existence of hysteresis between zero-field cooling (ZFC) and field cooling (FC) indicates that the phosphide is a type II superconductor.

The superconductivity of filled skutterudites LaT_4X_{12} (T = Fe, Ru and Os; X = P, As and Sb) has been studied at low temperatures. $La_x Rh_4 P_{12}$ is a new superconductor with a T_c of 17 K. The T_c s and lattice constants of these skutterudites are summarized in table 1. The lattice constant (=8.0605 Å) of LaRu₄P₁₂ is close to that of La_xRh₄P₁₂. Superconductivity of the Ru compound is observed at around 7.2 K. The T_c of La_xRh₄P₁₂ is about 10 K higher than that of LaRu₄P₁₂. The electronic density of the states at the Fermi energy (D_F) and the electron–phonon coupling parameter (λ) of LaRu₄P₁₂ are 0.42 states/eV atom and 0.57, respectively [3]. LaRu₄As₁₂ has the high T_c of 10.3 K. The values of D_F and λ for this arsenide are larger than those of LaRu₄P₁₂ [3, 8]. Since the T_c of La_xRh₄P₁₂ is much higher than that of LaRu₄As₁₂, the larger values for D_F and λ of La_xRh₄P₁₂ are to be expected. We have already reported that MoRuP and MoNiP have the highest T_c (15.5 K) among the metal phosphides [18, 19]. The T_c of La_xRh₄P₁₂ (17 K) is higher than those of both Mo phosphides.

The Seebeck coefficient of $La_x Rh_4 P_{12}$ has been measured at temperatures between 100 and 400 K. The thermoelectric power of the compound is negative, $S = -47 \ \mu V \ K^{-1}$, at room temperature. The absolute value of S increases linearly with increasing temperature. Ordinary filled skutterudites have positive Seebeck and Hall coefficients and behave as p-type conductors. In contrast, $La_x Rh_4 P_{12}$ is an n-type conductor with the skutterudite structure. The electronic band structure of this compound is very interesting.

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan: No 14204032(IS) and Priority Area 'Skutterudite' (No 15072206).

References

- [1] Delong L E and Meisner G P 1985 Solid State Commun. 53 119
- [2] Shirotani I, Adachi T, Tachi K, Todo S, Nozawa K, Yagi T and Kinoshita M 1996 J. Phys. Chem. Solids 57 211
- [3] Uchiumi T, Shirotani I, Sekine C, Todo S, Yagi T, Nakazawa Y and Kanoda K 1999 J. Phys. Chem. Solids 60 689
- [4] Shirotani I, Shimaya Y, Kihou K, Sekine C and Yagi T 2003 J. Solid State Chem. 174 32
- [5] Shirotani I, Shimaya Y, Kihou K, Sekine C, Takeda N, Ishikawa M and Yagi T 2003 J. Phys.: Condens. Matter 15 S2201
- [6] Kihou K, Shirotani I, Shimaya Y, Sekine C and Yagi T 2004 Mater. Res. Bull. 39 317
- [7] Shirotani I, Araseki N, Shimaya Y, Nakata R, Kihou K, Sekine C and Yagi T 2005 J. Phys.: Condens. Matter 17 4383
- [8] Shirotani I, Uchiumi T, Ohno K, Sekine C, Nakazawa Y, Kanoda K, Todo S and Yagi T 1997 Phys. Rev. B 56 7866
- [9] Shirotani I, Ohno K, Sekine C, Yagi T, Kawakami T, Nakanishi T, Takahashi H, Tang J, Matsushita A and Matsumoto T 2000 Physica B 281/282 1021
- [10] Takeda N and Ishikawa M 2000 J. Phys. Soc. Japan 69 863
- [11] Sugawara H, Osaki S, Saha S R, Aoki Y, Sato H, Inada Y, Shishido H, Settai R, Onuki Y, Harima H and Oikawa 2002 Phys. Rev. B 66 220504
- [12] Miyake A, Shimizu K, Sekine C, Kihou K and Shirotani I 2004 J. Phys. Soc. Japan 73 2370
- [13] Bauer E D, Frederick N A, Ho P-C, Zapf V S and Maple M B 2002 Phys. Rev. B 65 100506
- [14] Jeitschko W and Braun D 1977 Acta Crystallogr. B 33 3401
- [15] Rundqvist S and Ersson N-O 1968 Ark. Kemi. 30 103
- [16] Zemni S, Tranqui D, Chaudouet P, Madar R and Senateur J P 1986 J. Solid State Chem. 65 1
- [17] Takizawa H, Miura K, Ito M, Suzuki T and Endo T 1999 J. Alloys Compounds 282 79
- [18] Shirotani I 2003 Bull. Chem. Soc. Japan 76 1291
- [19] Shirotani I, Takaya M, Kaneko I, Sekine C and Yagi T 2000 Solid State Commun. 116 683